47 research outputs found

    Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock

    No full text
    Abstract Background Recent studies have suggested that excessive formation of neutrophil extracellular traps (NETs) plays a critical role in the pathogenesis of sepsis. Although elevation of the plasma level of cell-free DNA (cf-DNA) has been reported in sepsis patients, there has been little direct measurement of circulating free NETs such as myeloperoxidase-conjugated DNA (MPO-DNA). The objectives of this study were to detect NETs in the bloodstream of patients with septic shock, and to assess the correlations of circulating NET levels with organ dysfunction, disease severity, and mortality. Methods Fifty-five patients with septic shock admitted to the intensive care units (ICUs) of 35 Japanese hospitals were studied. Septic shock was diagnosed according to the 1997 definition of the American College of Chest Physicians/Society of Critical Care Medicine. To detect circulating NETs, plasma levels of MPO-DNA and cf-DNA were measured by sandwich enzyme-linked immunosorbent assay and by fluorometric assay on days 1, 3, and 7 after the onset of septic shock. Physiological and mortality data were collected from the clinical database. Results On days 1, 3, and 7, the patients showed a marked increase in plasma MPO-DNA levels compared with healthy volunteers, whereas the plasma cf-DNA level was only increased significantly on day 1 and then decreased rapidly. A high MPO-DNA level on days 3 and 7 were associated with 28-day mortality. On days 3 and 7, the MPO-DNA levels were inversely correlated with both the mean arterial pressure and the PaO2/FIO2 ratio, whereas the cf-DNA level was not correlated with either parameter. There was a positive correlation between the plasma MPO-DNA level and the sepsis-related organ failure assessment score on days 3 and 7. Neither cf-DNA nor MPO-DNA levels were correlated with the disseminated intravascular coagulation (DIC) score or the platelet count. Conclusion The increase in circulating MPO-DNA in patients with septic shock indicates acceleration of NET formation in the early stages of sepsis. High MPO-DNA levels are associated with the severity of organ dysfunction and 28-day mortality due to septic shock, but not with the DIC score. These results suggest that excessive NET formation contributes to the pathogenesis of septic shock

    Role of Plasma Proteins in Pharmacokinetics of Micafungin, an Antifungal Antibiotic, in Analbuminemic Rats â–¿

    No full text
    There were no significant differences in the pharmacokinetics of micafungin and expression of hepatic multidrug resistance-associated protein 2 (ABCC2/Mrp2) between analbuminemic and Sprague-Dawley rats. Micafungin bound strongly to high-density lipoprotein (HDL) and moderately to gamma globulin. These results suggest that HDL and gamma globulin contribute to the pharmacokinetics of micafungin

    Additional file 3: of Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock

    No full text
    Figure S3. Correlations of MPO-DNA and cf-DNA levels with the platelet count and the DIC score. Correlations of MPO-DNA and cf-DNA levels with the platelet count (A) and the DIC score (B) on day 3 after the diagnosis of septic shock. (PPTX 76 kb

    Additional file 1: of Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock

    No full text
    Figure S1. Determination of linearity of the MPO-DNA assay. The linear range of optical density (OD) in the MPO-DNA assay was determined with various sample volumes: A) 0, 6.25, 12.5, 25, 50, 75, and 100 μl; B) 0, 6.25, 12.5, 25, and 50 μl (n = 4 for each sample volume). (PPTX 64 kb

    Additional file 2: of Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock

    No full text
    Figure S2. Correlations of MPO-DNA and cf-DNA levels with organ failure parameters. Correlations of MPO-DNA and cf-DNA levels with the MAP (A), the P/F ratio (B), and the SOFA score (C) on day 1 after the diagnosis of septic shock. (PPTX 114 kb

    Increased PD-1 Expression and Altered T Cell Repertoire Diversity Predict Mortality in Patients with Septic Shock: A Preliminary Study

    No full text
    <div><p>Sepsis causes impairment of innate and adaptive immunity by multiple mechanisms, including depletion of immune effector cells and T cell exhaustion. Although lymphocyte dysfunction is associated with increased mortality and potential reactivation of latent viral infection in patients with septic shock, the relation between viral reactivation and lymphocyte dysfunction is obscure. The objectives of this study were 1) to determine the relation of lymphocyte dysfunction to viral reactivation and mortality, and 2) to evaluate recovery of lymphocyte function during septic shock, including T cell receptor (TCR) diversity and the expression of programmed death 1 (PD-1). In 18 patients with septic shock and latent cytomegalovirus (CMV) infection, serial blood samples were obtained on days 1, 3, and 7 after the onset of shock, and immune cell subsets and receptor expression were characterized by flow cytometry. TCR diversity of peripheral blood mononuclear cells was analyzed by Multi-N-plex PCR, and CMV DNA was quantified using a real-time PCR kit. A decrease of TCR diversity and monocyte HLA-DR expression were observed in the early stage of septic shock, while CD4+ T cells displayed an increase of PD-1 expression. Significant lymphopenia persisted for at least 7 days following the onset of septic shock. Normalization of TCR diversity and PD-1 expression was observed by day 7, except in patients who died. CMV reactivation was detected in 3 of the 18 patients during the first week of their ICU stay and all 3 patients died. These changes are consistent with the early stage of immune cell exhaustion and indicate the importance of normal lymphocyte function for recovery from septic shock. Ongoing lymphocyte dysfunction is associated with CMV reactivation and dissemination, as well as with unfavorable outcomes.</p></div
    corecore